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Abstract

Offshore platforms are usually located in hostile environments. These platforms undergo excessive
vibrations due to wave loads for both normal operating and extreme conditions. To ensure safety, the
displacements of the platforms need to be limited, whereas for the comfort of people who work at the
structures, accelerations also need to be restricted. This article is devoted to developing a proper procedure
on applying H2 control algorithm for controlling the lateral vibration of a jacket-type offshore platform by
using an active mass damper. In comparison with earlier studies, a number of improvements in problem
formulation, wave force filter design, and control algorithm implementation are made. The present paper
also numerically demonstrated the effectiveness of H2 active control. As expected, it significantly
outperforms the corresponding passive control that uses a tuned mass damper.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The history of structural designs can be roughly divided into three eras: classical, modern, and
post-modern. Much of the classical era for civil structural designs dealt only with static loads. The
modern era of structural design added specifications on the dynamic response. Today, major civil
infrastructures must be designed to satisfy both static and dynamic requirements in the presence
of a specified class of external loads. The post-modern era anticipates specifications on the
dynamic response in some cases that are so severe that they can only be met by feedback control
[1,2].
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In literature, extensive studies about feedback control have been conducted theoretically and
experimentally. Housner et al. [2] reviewed the state-of-the-art in structural vibration control for
civil engineering applications and cited over 300 articles. Among those studies, different kinds of
control devices, control algorithms and external loads (e.g. wind and earthquake loads) were
considered for bridges and high-rise buildings. Only a handful of studies were devoted to active
control for offshore structures subjected to waves [3–5]. As stated in Suhardjo and Kareem [6], the
active structural vibration control for offshore structures has not been appropriately investigated.

Dynamic loadings such as earthquake, wind and wave are usually modelled as stochastic
processes characterized in the frequency domain by power spectral density functions. Frequency
domain optimal control strategies allow the designer to directly deal with these natural
representations of the excitation during control design. The frequency domain approaches also
offer other attractive features, including that they allow the designer to specify disturbance
attenuation over a desired frequency range, as well as roll-off the control action at high frequency.
One of the frequency domain methods for controller design which has received much attention is
H2 control. Spencer et al. [7] was the first to apply H2 control strategies to civil engineering
structures for seismic protection purposes. Suhardjo and Kareem [6] extended the application of
H2 control algorithm to a jacket-type offshore platform in which the platform was modelled as a
shear building. Due to the mathematical requirement of H2 control algorithm that the input must
be white noise processes, both studies utilized a force filter to produce intended environmental
loading, i.e., passing a white noise process through the force filter to produce the intended loading
characteristics. However, they failed to include additional white noise terms to account for the
uncertainties associated with dynamic models. One intention of this article is to specify a right way
of applying H2 control algorithm to civil structures subjected to non-white excitations.
Furthermore, in comparison with the study by Shuardjo and Kareem [6], this study also makes
a number of improvements related to the problem formulation and methodology for applying H2

control algorithm to a jacket-type offshore platform. In particular, a new and efficient approach
on the wave force filter design is presented.

2. Preliminaries

The use of frequency domain analysis for a system is often more efficient than the time domain
analysis if the analysis is to be done over an extended period of time. Large time histories of
loading and response can be very cumbersome to work with, whereas a frequency domain analysis
can solve for any length of time all at once. This method is especially useful in the problem of an
offshore structure subject to a spectral wave loading which is already expressed in the frequency
domain. Frequency domain descriptions of linear time-invariant systems are useful in analysis of
the stability and response. The modal properties are expressed directly in system transfer

functions, and the computationally difficult convolution integrals are replaced by equivalent
multiplications of transforms and transfer functions in the frequency domain.

A linear constant continuous-time system is represented by either a transfer function, or its
state space description. Let the continuous-time system be written in the state space form:

’xðtÞ ¼ AxðtÞ þ BuðtÞ ð1Þ
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and

yðtÞ ¼ CxðtÞ þ DuðtÞ; ð2Þ

where x is the state variable vector, u, y the input and output vector, respectively, A, B, C, D the
matrices of proper dimensions, and the dot over a symbol indicates taking derivative with respect
to time, t: Taking Laplace transform of Eqs. (1) and (2) yields the corresponding s-domain
description as (assuming initial conditions x ¼ 0)

sxðsÞ ¼ AxðsÞ þ BuðsÞ ð3Þ

and

yðsÞ ¼ CxðsÞ þ DuðsÞ; ð4Þ

where s is the complex Laplace variable. From Eq. (3), one obtains

xðsÞ ¼ ðsI � AÞ�1BuðsÞ ð5Þ

then from Eq. (4)

yðsÞ ¼ ½CðsI � AÞ�1B þ D�uðsÞ; ð6Þ

where I is the identity matrix. The transfer function matrix from u to y; denoted as TyuðsÞ; thus can
be written as

TyuðsÞ ¼
yðsÞ
uðsÞ

¼ CðsI � AÞ�1B þ D: ð7Þ

The above relationship can be described in a block diagram as shown in Fig. 1. It is noted that
TyuðsÞ is completely defined by the constant matrices: A;B;C and D: A conventional way to
represent the TyuðsÞ is written as

Tyu :¼
A B

C D

" #
: ð8Þ

Using a general block diagram description, the H2 control problem can be depicted as in Fig. 2.
In this figure, P represents the plant transfer function and K the controller transfer function. The
vector valued signals, d; u; z and y represent the following: d is the exogenous signals representing
disturbances, sensor noise, model uncertainty, etc., u is the control signal, z is the signal of the
regulated output; and y is the measured signal. The regulated output vector z may consist of any
combination of states of the system and components of the control input vector u: By appropriate
choice of elements of z; different control design objectives can be included in the problem

Fig. 1. Block diagram for TyuðsÞ:
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formulation. Weighting functions can be added to elements of z to determine the frequency range
where each element of z is to be minimized. The ‘‘generalized’’ plant P in Fig. 2 can then contain
the structure plus filters and weighting functions in frequency domain. The H2 optimal control
problem consists in finding an optimal compensator K that internally stabilizes P and minimizes
the H2 norm of the closed-loop transfer function matrix from d to z; that is, jjTZDjj2: The optimal
controller K is constrained to provide internal stability which means that the states of P and K go
to zero from all initial values when d ¼ 0: The H2 norm of a stable transfer function matrix Tzd is
defined as [8,9]

jjTzdjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr

1

2p

Z
N

�N

TzdðjoÞTn

zdðjoÞ do
� �s

; ð9Þ

where tr stands for the trace of a matrix, j ¼
ffiffiffiffiffiffiffi
�1

p
and Tzd	 is the complex conjugate transpose of

Tzd: More physical insight into the meaning of the H2 norm can be obtained by noting that the H2

norm of a transfer function measures the r.m.s. (root mean square) value of its output in a vector
case, when the input is a unit white noise excitation vector. The r.m.s. value of the output vector z

is defined as

jjzjjr:m:s: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
E½z2

i ðtÞ�
q

; ð10Þ

where E½
� is the expected value operator, zi is the ith component of z; and n is the number of
components for the output vector z:

In Fig. 2, to obtain the transfer function Tzd; partitioning P into its components, i.e.,

P ¼
Pzd Pzu

Pyd Pyu

" #
: ð11Þ

It follows

z ¼ Pzdd þ Pzuu; y ¼ Pydd þ Pyuu; u ¼ Ky: ð12Þ

From the above relationships, the overall transfer function matrix from d to z for the closed-loop
system can then be written as [10]

Tzd¼ PzdþPzuKðI � PyuKÞ�1Pyd: ð13Þ

The above equation for the transfer function Tzd is often denoted in robust control literature as
the linear fractional operator, FcðP;KÞ:

System (P) 

Controller (K) 

d

u

z

y

Fig. 2. Closed-loop control system configuration.
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While converting from a state space representation to the corresponding transfer function is
unique as shown in Eq. (7), the reverse is not unique. Let the minimal realization of P be A; B; C

and D: Since P corresponds to two input vectors, d and u; and two output vectors z and y: A
similar expression of Eq. (8) now is partitioned into

P ¼

A B1 B2

C1 D11 D12

C2 D21 D22

2
64

3
75: ð14Þ

It implies the state space form:

’xðtÞ ¼ AxðtÞ þ B1dðtÞ þ B2uðtÞ; ð15Þ

zðtÞ ¼ C1xðtÞ þ D11dðtÞ þ D12uðtÞ ð16Þ

and

yðtÞ ¼ C2xðtÞ þ D21dðtÞ þ D22uðtÞ: ð17Þ

The H2 solution procedure in Doyle et al. [8] is based on the state space realization of the
transfer function P particularly with D11 ¼ D22 ¼ 0:

The H2 control has the advantage of satisfying the given robustness requirements; in terms of
the linear quadratic Gaussian (LQG) stochastic control, this corresponds to a judicious and well-
motivated choice of the weighting matrices of the quadratic criterion [10].

The freedom of choosing elements for z and frequency-dependent weighting functions make H2

approach very flexible. In the application of H2 control to offshore structures, it is reasonable to
assume that the plant transfer function P is real, rational and proper. It implies that the transfer
function P can be expressed as rational functions in s with real coefficients, and P is proper if PðNÞ
is finite. The goal is to seek a real, rational, and proper transfer function matrix K to minimize the
H2 norm of the transfer matrix connecting d and z; under the constraint that internal stability be
guaranteed. One must notice that the H2 control algorithm requires the input signal vector d

(external disturbance, sensor noise, model uncertainty) be white noise processes. However,
external disturbance due to the realistic wave force acting on the offshore structure is not a white
noise process. In order to meet this white noise input requirement, a force filter that produces
desired wave force characteristics as output from a white noise input must be introduced. The
wave force filter eventually will be combined with the structure as part of the ‘‘generalized’’ plant.

In addition to the input noise term to generate the desired wave force, other noise terms must
include to account for model uncertainties and measurement errors. Model uncertainties stem
from at least two sources: (i) Often the higher vibration modes of a structure are discarded in the
model. Therefore, one form of uncertainty is due to neglected dynamics. (ii) The actual mass or
stiffness of some element of the dynamical system always differs to some degree from the model
value. This is called parametric uncertainty.

Noise terms designated to generate desired external forces should be separated from noise terms
used to account for model uncertainties. Without separating these two is likely to produce an ill
model. This is because when one intends to tune the weighting between model uncertainty and
measurement error, it would affect the intended environmental forces as well. It is noticed that in
the previous application of H2 control by Spencer et al. [7] to seismic-induced vibration problem
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and the application by Suhardjo and Kareem [6] to wave-induced vibration problem, both studies
employed only one noise term to generate filtered environment forces and to account for model
uncertainties. In the present study, noise terms for generating filtered wave loading and
accounting for model uncertainty will be separated.

3. Problem formulation

The intention of this study is having an active mass damper (AMD) that is placed at the deck of
a template offshore platform by applying H2 control algorithm to reduce the deck motion. First,
one can apply the finite element method to numerically model the fixed offshore platform as a
multi-degree-of-freedom (m.d.o.f.) system. In the present study, for simplicity, the offshore
structure is simplified to be a single-degree-of-freedom (s.d.o.f.) system that is governed by its first
vibration mode. The simplification procedure can be based on a standard eigenanalysis to identify
its first mode and corresponding modal parameters. Usually this s.d.o.f. model represents an
appropriate approximation for the structural model due to the reason that typical wave-resistant
offshore structures are designed to have the structural fundamental frequency much larger than
the dominant wave frequency, and therefore the structural response is always dominated by the
first mode. In consequence, a s.d.o.f. consideration for the structural model is adequate for
vibration control purpose.

Denote the modal mass, stiffness, and damping associated with the simplified s.d.o.f. offshore
structure to be m1; k1 and c1; and the corresponding modal co-ordinate refers to the deck motion
of the offshore structure, denoted by xs: The mass, stiffness, and damping of the AMD located at
the deck are denoted to be m2; k2 and c2; and the displacement of the AMD is xa: A sketch of
the combined system is shown in Fig. 3, where u and p represent the active control force and the
generalized (modal) wave force, respectively. Mathematically, the equations of motion for the
combined system can be described by two coupled second order differential equations as

m1 .xs þ c1 ’xs þ k1xs ¼ p � u þ c2ð ’xa � ’xsÞ þ k2ðxa � xsÞ; ð18Þ

Fig. 3. An idealized two-degree-of-freedom system.
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m2 .xa þ c2ð ’xa � ’xsÞ þ k2ðxa � xsÞ ¼ u: ð19Þ

Letting x ¼ xs;xa; ’xs; ’xaf gT; where superscript T stands for transpose, and using a state space
representation for the combined system, one shows

’x ¼ Ax þ Bu þ Ep; ð20Þ

where

A ¼

0 0 1 0

0 0 0 1

�k1 � k2

m1

k2

m1

�c1 � c2

m1

c2

m1

k2

m2

�k2

m2

c2

m2

�c2

m2

2
66666664

3
77777775
; ð21Þ

B ¼

0

0

�1

m1

1

m2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð22Þ

and

E ¼

0

0

1

m1

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð23Þ

To account for model uncertainties, adding a vector noise term, w; to Eq. (20), one obtains

’x ¼ Ax þ Bu þ Ep þ w: ð24Þ

In the next section, the transfer function for a filter, denoted as F ðsÞ; to output the generalized
wave force pðtÞ from a unit white noise process, w1; will be developed. Based on the equation of
motion given in Eq. (24) and the framework of H2 control block diagram, one assigns the input d

as

d ¼

w1

w

v

8><
>:

9>=
>;; ð25Þ

where v represents the measurement noise vector. The dimension of w is the number of state
variables, Ns; and the dimension of v is the number of measurements, Nm: Elements of the white
noise vector w; as well as those of v; could be correlated with various variances. Vectors w and v

can also be expressed mathematically as linear transformations of uncorrelated unit white noise
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processes as

w ¼ Lwnw; ð26Þ

v ¼ Lvnv; ð27Þ

where nw and nv represent uncorrelated unit white noise process vector with dimension Ns and Nm;
respectively, and Lw and Lv are square matrices of dimensions Ns and Nm:

The regulated output z normally contains two components:

z ¼
z1

z2

( )
; ð28Þ

where z1 is the weighted structural response and z2 is the weighted control force. The dimension of
z1 and z2 both can be greater than one. However, in the present application, only one control force
will be available. For simplicity, the weighted structural response will be chosen to be one also.

A detailed H2 control block diagram representation of the system given in Eq. (24) is depicted
in Fig. 4. In this figure, in addition to those symbols that have been defined, Cy and Cz are
constant matrices that dictate the components of structural response comprising the measured
output vector y and the regulated response, respectively. For a single control force and a single
regulated response, W1 and W2 are frequency-dependent weighting functions, and a1 and a2 are
scalar multipliers for W1 and W2; respectively. Increasing a1W1 in a frequency range causes the
transfer function from w1 and w to the weighted structural response z1 to be minimized more. This
will help improve the performance of the system at those frequencies. Increasing a2W2 in a
frequency range causes the transfer function from u to the weighted control force z2 to be
minimized more. This will help limit the control forces. Increasing one of the weightings in

Fig. 4. H2 control block diagram for offshore structures subjected to waves.
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frequency range decreases the importance of the other weighting in that frequency range. With
this set-up, the matrix P expressed in the form of Eq. (11) is given by

P ¼
Pzd Pzu

Pyd Pyu

" #
¼

Pz1w1
Pz1w Pz1v Pz1u

Pz2w1
Pz2w Pz2v Pz2u

Pyw1
Pyw Pyv Pyu

2
64

3
75 ð29Þ

in which each component can be obtained simply by following an appropriate path of Fig. 4. For
instance, the way to obtain Pz1w1

is by tracing the path from w1 to z1: One needs to pre-multiply all
passing blocks from w1 to z1 to obtain: Pz1w1

¼ a1W1CzðsI � AÞ�1EF : Following a similar
procedure, one obtains the complete information of P as

P ¼

a1W1CzGEF a1W1CzG 0 a1W1CzGB

0 0 0 a2W2

CyGEF CyG I CyGB

2
64

3
75; ð30Þ

where G ¼ ðsIFAÞ21:

4. Generalized wave force filter

It is assumed that the wave elevation is a zero-mean, stationary, Gaussian random process, fully
characterized by its wave spectrum, SZðoÞ; i.e., the power spectral density function (psd) of the
wave elevation, ZðtÞ: As mentioned previously, applying the H2 control strategy to offshore
structure under such wave environment requires the design of a wave force filter. In the present
study, the control is on the first mode of the offshore structure. In consequence, the filter design,
given the input being a unit white noise process, should intend to get the output process that has
its psd approximated to the psd of the ‘‘generalized’’ wave force associated with the first mode,
SpðoÞ: Three steps are involved in the development of the wave force filter: (i) One needs to know
how to numerically calculate the SpðoÞ from a given SZðoÞ: (ii) Once the numerical result for SpðoÞ
is obtained, it is required to approximate the numerical result by a rational form. (iii) Finally, a
spectral factorization must be performed on the rational psd to obtain a rational transfer function
that represents the filter [11,12].

The generalized wave force corresponding to the first mode of the structure can be expressed as

pðtÞ ¼
Z d

0

f ðz; tÞfðzÞ dz; ð31Þ

where z is the vertical co-ordinate with the origin at the sea floor, d the water depth, fðzÞ the shape
function corresponding to the first mode, and f ðz; tÞ denotes the physical horizontal wave force
per unit length along the cylindrical structural members that is usually estimated based on the
Morison equation

f ðz; tÞ ¼ Km ’vðz; tÞ þ Kdvðz; tÞjvðz; tÞj; ð32Þ

where Km ¼ CmrpD2=4;Kd ¼ 1
2
CdrD; vðz; tÞ and ’vðz; tÞ are the water particle velocity and

acceleration, respectively, D the diameter of the cylindrical structure, r fluid density, and Cm

and Cd the dimensionless inertia and drag coefficients, respectively [14,15].
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Following the linear wave theory, one can derive the water particle velocity, for the wave
elevation with wave frequency o; at location z related to ZðtÞ as

vðz; tÞ ¼ o
coshðkzÞ
sinhðkdÞ

ZðtÞ; ð33Þ

where k is the wave number that can be determined from the linear dispersion relationship:

o2 ¼ gk tanhðkdÞ; ð34Þ

where g is the gravity constant. Alternatively, one can also write Eq. (33) as

vðz; tÞ ¼ TvZðo; zÞZðtÞ; ð35Þ

where

TvZðo; zÞ ¼ o
coshðkzÞ
sinhðkdÞ

ð36Þ

stands for the complex frequency response (CFR) function from Z to v: The CFR function is
related to the corresponding transfer function simply by the variable change s ¼ jo; where j ¼ffiffiffiffiffiffiffiffi
�1:

p
Similarly, applying linear wave theory, one obtains

’vðz; tÞ ¼ T’vZðo; zÞZðtÞ; ð37Þ

where the CFR function from Z to ’v is written as

T’vZðo; zÞ ¼ �jo2coshðkzÞ
sinhðkdÞ

: ð38Þ

As implied in Eqs. (36) and (38), the horizontal velocity and wave elevation are in phase.
However, the horizontal acceleration and elevation are 901 out-of-phase.

To analytically obtain the CFR function from, Z to f is difficult due to the non-linear drag term
in Eq. (32). For this reason, a linearized Morison equation is commonly used [15]:

f ðz; tÞ ¼ Km ’vðz; tÞ þ Kd

ffiffiffi
8

p

r
svðzÞvðz; tÞ; ð39Þ

where svðzÞ is the standard deviation of the velocity at location z that can be obtained as

svðzÞ ¼
Z o

0

jTvZðo; zÞj2SZðoÞ do
� �1=2

: ð40Þ

Substituting Eqs. (35), (37) and (39) into Eq. (31) yields

pðtÞ ¼ TpZðoÞZðtÞ; ð41Þ

where

TpZðoÞ ¼
Z d

0

KiT’vZðo; zÞ þ Kd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

p
svðzÞTvZðo; zÞ

r" #
fðzÞ dz: ð42Þ

Note that the calculation for the CFR function TpZðoÞ involves two one-dimensional numerical
integrations, Eqs. (40) and (42). Given the psd of wave elevation, SZðoÞ; and the CFR function
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from Z to p; TpZðoÞ; one readily calculates the psd for the generalized wave force as

SZðoÞ ¼ jTpZðoÞj2SZðoÞ: ð43Þ

The generalized wave force filter design is based on two requirements: (i) the input is a unit white
noise process, o1; and (ii) the psd of the output, denoted as #SpðoÞ; must be as close to SpðoÞ; given
in Eq. (43), as possible. Theoretically, one can express #SpðoÞ to be

#SpðoÞ ¼ 1 
 jTpo1
ðoÞj2 ¼ Tpo1

ðioÞ 
 Tpo1
ð�ioÞ; ð44Þ

where Tpo1
ðoÞ is the CRF function from o1 to p: The above equation can also be written in the s-

domain as

#SpðsÞ ¼ Tpo1
ðsÞTpo1

ð�sÞ: ð45Þ

Now, Tpo1
ðsÞ is interpreted as the transfer function from o1 to p:

If the spectral function #SpðsÞ can be written in a rational spectral form, i.e., as a ratio of
polynomials in s2:

#SpðsÞ ¼
b0s2m þ b1s2ðm�1Þ þ 
 
 
 þ bm�1s2 þ bm

a0s2n þ a1s2ðn�1Þ þ 
 
 
 þ an�1s2 þ an

; nXm þ 1; ð46Þ

then the spectral factorization can be used to write the function in the form:

#SpðsÞ ¼
cðsÞ
dðsÞ



cð�sÞ
dð�sÞ

; ð47Þ

where cðsÞ=dðsÞ has all its poles and zeros in the left half-plane and cð�sÞ=dð�sÞ has mirror-image
poles and zeros in the right half-plane. The order of the denominator n being at least one greater
than the numerator m is necessary in order for the output process to have a finite variance. A
direct comparison of Eqs. (44) and (47) suggests [12]

Tpo1
ðsÞ ¼

cðsÞ
dðsÞ

: ð48Þ

In numerical implementation, a specific form for #SpðsÞ in Eq. (46) must be chosen a priori; and the
corresponding numerator and denominator coefficients can be determined by a standard least-
squares approach when numerical result of #SpðoÞ from Eq. (43) becomes available.

5. Numerical example

The structure adopted in the numerical study is an offshore platform of length 249 m (L) placed
in 218 m (d) of water. The structural configuration consists of a template structure with four main
legs. After applying the finite element method to numerically model the fixed offshore platform as
a MDOF system, the offshore structure is simplified to be a s.d.o.f. system governed by its first
vibration mode. The generalized mass associated with the simplified s.d.o.f. offshore structure is
obtained to be m1 ¼ 7 825 307 kg. The corresponding vibration frequency is 2.048 rad/s that
amounts to a structural period 3.07 s. It is assumed the structural damping ratio for the first mode
is 2%. The mass of the AMD located at the deck is taken to be 1% of first modal mass of
structure, i.e., m2 ¼ 78 253 kg. The stiffness and damping of the AMD are determined based on an
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optimal design for a tuned mass damper (TMD) where the vibration period and damping ratio of
the TMD are taken to be 3.13 s (98% of the first modal frequency of the structure) and 20%,
respectively [13].

The random wave condition is assumed to be Gaussian and stationary, characterized by a
JONSWAP spectrum [14,15]:

#SpðoÞ ¼
5H2

s

16o0

� �
o0

o

�  5

exp½�1:25ðo=o0Þ
�4�gb; ð49Þ

where Hs is the significant wave height, o0 the dominant (peak) wave frequency, g the peakedness
coefficient being taken to be 3.3, and b ¼ exp½�ðo� o0Þ

2=ð2t2o2
0Þ� in which t ¼ 0:07 for opo0

and t ¼ 0:09 for oXo0: Unless stated otherwise, the numerical study below is based on Hs ¼ 7 m
and o0 ¼ 0:79 rad/s (i.e., dominant wave period=8 s).

The standard deviation of the horizontal water particle velocity decays exponentially with
depth. While applying Eq. (31) to calculate the generalized wave force corresponding to the first
mode of the structure, one approximates the shape function as a function of z:

fðzÞ ¼ 1 � cos
pz

2L

�  
; 0pzpL: ð50Þ

Furthermore, following equations (42) and (43), one can calculate the psd for the generalized
wave force. Taking Cm ¼ 1:5; Cd ¼ 1:0 and D ¼ 1:83 m, one obtains the numerical result of the
psd function of the generalized wave force acting on the structure, SpðoÞ; shown as the broken line
in Fig. 5.

In order to obtain a rational form for the transfer function Tpo1
ðsÞ associated with the

generalized wave force filter, one needs first to obtain a rational form for the numerical psd SpðoÞ:
By referring to Spanos [16], the mathematical model for the rational psd #SpðoÞ is chosen to be

#SpðoÞ ¼ jTpo1
ðoÞj2 ¼

b
o
o0

� �
o
o0

� �8

þa1
o
o0

� �6

þa2
o
o0

� �4

þa3
o
o0

� �2

þa4

; ð51Þ

where o0 is the peak frequency corresponding to the JONSWAP wave spectrum. Coefficients a1;
a2; a3; a4 and b are determined based on an ordinary least-squares approach. The solid line shown
in Fig. 5 is the obtained #SpðoÞ: It suggests that the estimated analytical spectrum is in good
agreement with the numerical spectrum.

In turn, expressed in the s-domain, the corresponding #SpðsÞ is written as

#SpðsÞ ¼
b	s4

s8 þ a	
1s6 þ a	2s4 þ a	3s2 þ a	

4

; ð52Þ

where a	
1 ¼ �a1o2

0; a
	
2 ¼ a2o4

0; a
	
3 ¼ �a3o6

0; a
	
4 ¼ a4o8

0; and b	 ¼ bo4
0: Once all coefficients of

Eq. (52) are known, the transfer function for the generalized wave force filter, denoted as F in
the block diagram shown in Fig. 4, can be obtained by performing the spectral factorization of
Eq. (52).

While applying H2 optimization control, choosing the weighting functions is crucial for
obtaining meaningful engineering results. In general, a direct application of the H2 optimization
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seeks to minimizing the H2 norm over all frequencies without placing more emphasis or penalty
on certain frequency ranges. For the control model used in this study, frequency-dependent
weighting functions W1 and W2 are employed to reflect the cost (penalty) functions for the deck
motion and control force, respectively. In practical implementation of the controller, control
action at higher frequencies is usually of little benefit and may in fact be detrimental to the
performance of the system due to spill-over effects. It is usually intended to reduce the structural
response in the frequency range where the structure is sensitive to disturbance, i.e., at low
frequencies. At high frequencies where the structure is often not sensitive to disturbance, It is
desire to ‘‘roll off’’ or lower the control because the control is not effective. Hence the choice for
W1 should have a large magnitude at low frequencies and roll off at high frequencies. For the
choice of W2; it is intended not to inject high frequency control forces into the system, partially
due to the limitation of the control hardware. Therefore, the weighting function should have high
weighting on high frequency and low weighting on low frequency. In the present numerical study,
the weighting functions are given as

W1 ¼
4

s þ 4
ð53Þ

and

W2 ¼
s þ 0:1

s þ 4
: ð54Þ

Magnitudes of the functions W1 and W2 versus frequency are shown in Fig. 6. As can be seen, the
weighting function associated with deck motion is highest at the low frequencies and drops with
increasing frequency. The weighting function associated with control force is very low at the low
frequencies and increases with higher frequencies. This provides a system that will give the most
control at low frequencies, and will tend to ignore motion at the higher frequencies. The
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Fig. 5. Numerical and analytical psd functions for generalized wave force.
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coefficients a1 and a2 are constant quantities that intend to bring the scale, and unit as well, of the
deck motion and control force to be comparable and consistent.

The noise level associated with the measurements and the uncertainty associated with the plant
model ideally should be determined based on the best engineering judgment prior to applying the
control algorithm. However, it is not unusual to tune the relative noise level during the
implementation time. It is also realized that the performance of the H2 control is highly sensitive
to the selection of noise levels.

Shown in Fig. 7 is an example of the results about magnitudes of the transfer function from unit
white noise to weighted deck motion Tz1o1

for cases: (i) with no control, (ii) with a passive TMD,
and (iii) with an AMD controlled by H2 algorithm. It basically demonstrates that installing a
TMD with its frequency tuned near to the fundamental structural frequency enables to reduce the
deck motion of the offshore structure, only effective in the frequency range near to the
fundamental structural frequency, and that properly applying an H2 control algorithm together
with an AMD can significantly reduce the deck vibration for a wide frequency range, covering
ranges of significance to both the ocean wave and the offshore structure.

The numerical comparison of standard deviations of deck motion, denoted as sx1; for the above
three control cases are given in Table 1. The standard deviation of the deck motion with a TMD is
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calculated to be 2.77 cm; and that with H2 control is 1.69 cm. This represents a reduction of
approximately 50.01%. In this table, su represents the standard deviation associated with the
required active control force by H2 control algorithm.

6. Concluding remarks

Similar to the study by Suhardjo and Kareem [6], this article has been devoted to developing a
proper procedure on applying H2 control algorithm for controlling the lateral vibration of a
jacket-type offshore platform by using an AMD. A number of improvements in problem
formulation, wave force filter design, and control algorithm implementation are made at various
stages. Unlike the study by Suhardjo and Kareem [6], which adopted a shear building model, the
present paper models a realistic offshore platform by using a finite element approach. In
implementing H2 algorithm, the vibration control is conducted in the domain of modal
(generalized) co-ordinates. This modal approach greatly simplifies the wave force filter design, in
which the ‘‘generalized’’ wave force is determined based on an analytical approximation of the

Fig. 7. Magnitude of the transfer functions from unit white noise w1 to the weighted deck motion z1:

Table 1

Standard deviations of deck motion and control force ( Hs ¼ 6 m, oo ¼ 0:78 rad/s)

sx1 (cm) su (kN)

No control 1.71 —

TMD control 1.36 —

H2 control 0.86 661.7
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mode shape function, together with the physical wave loading being calculated from a linearized
Morison equation. Another significant improvement over previous studies is on the issue about
the separation of white noise terms corresponding to wave force filter and dynamic model
uncertainty. The introduction of a separated noise term is important to meet the underlying
principles associated with H2 control algorithm. With this change, it allows the algorithm to freely
vary the weighting of error between measurement and dynamic model of the system, but keeps the
design wave force ‘‘size’’ intact. In addition, the present paper also numerically demonstrated the
effectiveness of H2 active control. As expected, it significantly outperforms the corresponding
passive control that uses a TMD.
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